506 research outputs found

    Young open clusters in the Milky Way and Small Magellanic Cloud

    Get PDF
    NGC6611, Trumpler 14, Trumpler 15, Trumpler 16, Collinder 232 are very young open clusters located in star-formation regions of the Eagle Nebula or the Carina in the MW, and NGC346 in the SMC. With different instrumentations and techniques, it was possible to detect and classify new Herbig Ae/Be stars, classical Be stars and to provide new tests / comparisons about the Be stars appearance models. Special stars (He-strong) of these star-formation regions are also presented.Comment: Proceedings IAUS266 at the IAU-GA 200

    NTT infrared imaging of star cluster candidates towards the central parts of the Galaxy

    Get PDF
    We address the issue whether the central parts of the Galaxy harbour young clusters other than Arches, Quintuplet and the Nuclear Young Cluster. A large sample of centrally projected cluster candidates has been recently identified from the 2MASS J, H and Ks Atlas. We provide a catalogue of higher angular resolution and deeper images for 57 2MASS cluster candidates, obtained with the near-IR camera SOFI at the ESO NTT telescope. We classify 10 objects as star clusters, some of them deeply embedded in gas and/or dust clouds. Three other objects are probably star clusters, although the presence of dust in the field does not exclude the possibility of their being field stars seen through low-absorption regions. Eleven objects are concentrations of stars in areas of little or no gas, and are classified as dissolving cluster candidates. Finally, 31 objects turned out to be the blend of a few bright stars, not resolved as such in the low resolution 2MASS images. By combining the above results with other known objects we provide an updated sample of 42 embedded clusters and candidates projected within 7 degrees. As a first step we study Object 11 of Dutra & Bica (2000) projected at approximately 1 degree from the nucleus. We present H and Ks photometry and study the colour-magnitude diagram and luminosity function. Object 11 appears to be a less massive cluster than Arches or Quintuplet, and it is located at a distance from the Sun d=8 kpc, with a visual absorption Av=15.Comment: accepted to A&A, 9 pages, 10 figure

    Spectroscopy of horizontal branch stars in Omega Centauri

    Full text link
    We analyze the reddening, surface helium abundance and mass of 115 horizontal branch (HB) and blue hook (BH) stars in OmegaCentauri, spanning the HB from the blue edge of the instability strip to Teff~50000K. The mean cluster reddening is E(B-V)=0.115+-0.004, in good agreement with previous estimates, but we evidence a pattern of differential reddening in the cluster area. The stars in the western half are more reddened than in the southwest quadrant by 0.03-0.04 magnitudes. We find that the helium abundances measured on low-resolution spectra are systematically lower by ~0.25 dex than the measurements based on higher resolution. No difference in helium abundance is detected between OmegaCentauri and three comparison clusters, and the stars in the range 11500-20000K follow a trend with temperature, which probably reflects a variable efficiency of the diffusion processes. There is mild evidence that two families of extreme HB (EHB) stars (Teff>20000K) could exist, as observed in the field, with ~15% of the objects being helium depleted by a factor of ten with respect to the main population. The distribution of helium abundance above 30000K is bimodal, but we detect a fraction of He-poor objects lower than previous investigations. The observations are consistent with these being stars evolving off the HB. Their spatial distribution is not uniform, but this asymmetric distribution is only marginally significative. We also find that EHB stars with anomalously high spectroscopic mass could be present in OmegaCentauri, as previously found in other clusters. The derived temperature-color relation reveals that stars hotter than 11000K are fainter than the expectations of the canonical models in the U band, while no anomaly is detected in B and V. This behavior, not observed in NGC6752, is a new peculiarity of OmegaCentauri HB stars.Comment: Accepted for publication in A&

    A hot horizontal branch star with a close K-type main-sequence companion

    Get PDF
    Dynamical interactions in binary systems are thought to play a major role in the formation of extreme horizontal branch stars (EHBs) in the Galactic field. However, it is still unclear if the same mechanisms are at work in globular clusters, where EHBs are predominantly single stars. Here we report on the discovery of a unique close binary system (period ~1.61 days) in the globular cluster NGC6752, comprising an EHB and a main-sequence companion of 0.63+-0.05 Msun. Such a system has no counterpart among nearly two hundred known EHB binaries in the Galactic field. Its discovery suggests that either field studies are incomplete, missing this type of systems possibly because of selection effects, or that a particular EHB formation mechanism is active in clusters but not in the field

    Spectroscopic search for binaries among EHB stars in globular clusters

    Full text link
    We performed a spectroscopic search for binaries among hot Horizontal Branch stars in globular clusters. We present final results for a sample of 51 stars in NGC6752, and preliminary results for the first 15 stars analyzed in M80. The observed stars are distributed along all the HBs in the range 8000 < Teff < 32000 K, and have been observed during four nights. Radial velocity variations have been measured with the cross-correlation technique. We carefully analyzed the statistical and systematic errors associated with the measurements in order to evaluate the statistical significance of the observed variations. No close binary system has been detected, neither among cooler stars nor among the sample of hot EHB stars (18 stars with Teff > 22000 K in NGC6752). The data corrected for instrumental effects indicate that the radial velocity variations are always below the 3sigma level of ~15 km/s. These results are in sharp contrast with those found for field hot subdwarfs, and open new questions about the formation of EHB stars in globular clusters, and possibly of the field subdwarfs.Comment: To appear in Baltic Astronomy. Proceedings of the 2nd meeting on Hot Subdwarf Stars, La Palma, June 2005. 4 pages, 2 figure

    Lithium abundances in globular cluster giants: NGC 6218 (M12) and NGC 5904 (M5)

    Full text link
    Convergent lines of evidence suggest that globular clusters host multiple stellar populations. It appears that they experience at least two episodes of star formation whereby a fraction of first-generation stars contribute astrated ejecta to form the second generation(s). To identify the polluting progenitors we require distinguishing chemical signatures such as that provided by lithium. Theoretical models predict that lithium can be synthesised in AGB stars, whereas no net Li production is expected from other candidates. It has been shown that in order to reproduce the abundance pattern found in M4, Li production must occur within the polluters, favouring the AGB scenario. Here we present Li and Al abundances for a large sample of RGB stars in M12 and M5. These clusters have a very similar metallicity, whilst demonstrating differences in several cluster properties. Our results indicate that the first-generation and second-generation stars share the same Li content in M12; we recover an abundance pattern similar to that observed in M4. In M5 we find a higher degree of complexity and a simple dilution model fails in reproducing the majority of the stellar population. In both clusters we require Li production across the different stellar generations, but production seems to have occurred to different extents. We suggest that such a difference might be related to the cluster mass with the Li production being more efficient in less-massive clusters. This is the first time a statistically significant correlation between the Li spread within a GC and its luminosity has been demonstrated. Finally, although Li-producing polluters are required to account for the observed pattern, other mechanisms, such as MS depletion, might have played a role in contributing to the Li internal variation, though at relatively low level.Comment: Accepted for publication in The Astrophysical Journal. 15 pages, 14 figure

    On the serendipitous discovery of a Li-rich giant in the globular cluster NGC 362

    Get PDF
    We have serendipitously identified the first lithium-rich giant star located close to the red giant branch bump in a globular cluster. Through intermediate-resolution FLAMES spectra we derived a lithium abundance of A(Li)=2.55 (assuming local thermodynamical equilibrium), which is extremely high considering the star's evolutionary stage. Kinematic and photometric analysis confirm the object as a member of the globular cluster NGC 362. This is the fourth Li-rich giant discovered in a globular cluster but the only one known to exist at a luminosity close to the bump magnitude. The three previous detections are clearly more evolved, located close to, or beyond the tip of their red giant branch. Our observations are able to discard the accretion of planets/brown dwarfs, as well as an enhanced mass-loss mechanism as a formation channel for this rare object. Whilst the star sits just above the cluster bump luminosity, its temperature places it towards the blue side of the giant branch in the colour-magnitude diagram. We require further dedicated observations to unambiguously identify the star as a red giant: we are currently unable to confirm whether Li production has occurred at the bump of the luminosity function or if the star is on the pre zero-age horizontal branch. The latter scenario provides the opportunity for the star to have synthesised Li rapidly during the core helium flash or gradually during its red giant branch ascent via some extra mixing process.Comment: Accepted for publication in The Astrophysical Journal Letter

    Spectroscopy of horizontal branch stars in NGC6752 - Anomalous results on atmospheric parameters and masses

    Full text link
    We used the ESO VLT-FORS2 facility to collect low-resolution spectra of 51 targets distributed along the Horizontal Branch. We determined atmospheric parameters by comparison with theoretical models through standard fitting routines, and masses by basic equations. Results are in general in good agreement with previous works, although not always with theoretical expectations for cooler stars (Teff<15000 K). The calculated color excess is systematically lower than literature values, pointing towards a possible underestimation of effective temperatures. Moreover, we find two groups of stars at Teff=14000 K and at Teff=27000$ K that present anomalies with respect to the general trend and expectations. We suppose that the three peculiar bright stars at Teff=14000 K are probably affected by an enhanced stellar wind. For the eight Extreme Horizontal Branch stars at Teff=27000 K which show unusually high masses we find no plausible explanation. While most of our results agree well with the predictions of standard horizontal branch evolution, we still have problems with the low masses we derive in certain temperature ranges. We believe that Kurucz ATLAS9 LTE model atmospheres with solar-scaled abundances are probably inadequate for these temperature ranges. Concerning the group of anomalous stars at Teff=27000 K, a Kolmogorov-Smirnov test indicates that there is only an 8.4% probability that these stars are randomly drawn from the general distribution in the color-magnitude diagram. This is not conclusive but points out that these stars could be both (and independently) spectroscopically and photometrically peculiar with respect to the general Extreme Horizontal Branch population.Comment: 12 pages, 10 figures, accepted for pubblication in A&A. Replaced for typos and better LaTeX outpu

    Lithium abundances in globular cluster giants: NGC 1904, NGC 2808, and NGC 362

    Get PDF
    The presence of multiple populations in globular clusters has been well established thanks to high-resolution spectroscopy. It is widely accepted that distinct populations are a consequence of different stellar generations: intra-cluster pollution episodes are required to produce the peculiar chemistry observed in almost all clusters. Unfortunately, the progenitors responsible have left an ambiguous signature and their nature remains unresolved. To constrain the candidate polluters, we have measured lithium and aluminium abundances in more than 180 giants across three systems: NGC~1904, NGC~2808, and NGC~362. The present investigation along with our previous analysis of M12 and M5 affords us the largest database of simultaneous determinations of Li and Al abundances. Our results indicate that Li production has occurred in each of the three clusters. In NGC~362 we detected an M12-like behaviour, with first and second-generation stars sharing very similar Li abundances favouring a progenitor that is able to produce Li, such as AGB stars. Multiple progenitor types are possible in NGC~1904 and NGC~2808, as they possess both an intermediate population comparable in lithium to the first generation stars and also an extreme population, that is enriched in Al but depleted in Li. A simple dilution model fails in reproducing this complex pattern. Finally, the internal Li variation seems to suggest that the production efficiency of this element is a function of the cluster's mass and metallicity - low-mass or relatively metal-rich clusters are more adept at producing Li.Comment: Accepted for publication in MNRAS. 10 pages, 8 figure
    • …
    corecore